Dynamic Authenticated Index Structures for Outsourced
Databases

Feifei Lif Marios Hadjieleftheriou?

George Kolliosf Leonid Reyzin'

TBoston University, USA. *AT&T Labs-Research, USA.
lifeifei, gkollios, reyzin@cs.bu.edu, marioh@research.att.com

ABSTRACT

In outsourced database (ODB) systems the database owner
publishes its data through a number of remote servers, with
the goal of enabling clients at the edge of the network to
access and query the data more efficiently. As servers might
be untrusted or can be compromised, query authentication
becomes an essential component of ODB systems. Exist-
ing solutions for this problem concentrate mostly on static
scenarios and are based on idealistic properties for certain
cryptographic primitives. In this work, first we define a va-
riety of essential and practical cost metrics associated with
ODB systems. Then, we analytically evaluate a number of
different approaches, in search for a solution that best lever-
ages all metrics. Most importantly, we look at solutions
that can handle dynamic scenarios, where owners periodi-
cally update the data residing at the servers. Finally, we
discuss query freshness, a new dimension in data authenti-
cation that has not been explored before. A comprehensive
experimental evaluation of the proposed and existing ap-
proaches is used to validate the analytical models and verify
our claims. Our findings exhibit that the proposed solutions
improve performance substantially over existing approaches,
both for static and dynamic environments.

1. INTRODUCTION

Database outsourcing [13] is a new paradigm that has
been proposed recently and received considerable attention.
The basic idea is that data owners delegate their database
needs and functionalities to a third-party that provides ser-
vices to the users of the database. Since the third party
can be untrusted or can be compromised, security concerns
must be addressed before this delegation.

There are three main entities in the Outsourced Database
(ODB) model: the data owner, the database service provider
(a.k.a. server) and the client. In general, many instances of
each entity may exist. In practice, usually there is a single
or a few data owners, a few servers, and many clients. The
data owner first creates the database, along with the asso-
ciated index and authentication structures and uploads it
to the servers. It is assumed that the data owner may up-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

S GMOD 2006, June 27-29, 2006, Chicago, Illinois, USA.

Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

121

date the database periodically or occasionally, and that the
data management and retrieval happens only at the servers.
Clients submit queries about the owner’s data to the servers
and get back results through the network.

It is much cheaper to maintain ordinary servers than to
maintain truly secure ones, particularly in the distributed
setting. To guard against malicious/compromised servers,
the owner must give the clients the ability to authenticate
the answers they receive without having to trust the servers.
In that respect, query authentication has three important
dimensions: correctness, completeness and freshness. Cor-
rectness means that the client must be able to validate that
the returned records do exist in the owner’s database and
have not been modified in any way. Completeness means
that no answers have been omitted from the result. Finally,
freshness means that the results are based on the most cur-
rent version of the database, that incorporates the latest
owner updates. It should be stressed here that query fresh-
ness is an important dimension of query authentication that
has not been extensively explored in the past, since it is a
requirement arising from updates to the ODB systems, an
aspect that has not been sufficiently studied yet.

There are a number of important costs relating to the
construction, query, and update phases of the aforemen-
tioned model. In particular, in this work the following met-
rics are considered: 1. The computation overhead for the
owner, 2. The owner-server communication cost, 3. The
storage overhead for the server, 4. The computation over-
head for the server, 5. The client-server communication cost,
and 6. The computation cost for the client (for verification).

Previous work has addressed the problem of query au-
thentication mostly for static scenarios, where owners never
issue data updates. In addition, existing solutions take into
account only a subset of the metrics proposed here, and
hence are optimized only for particular scenarios and not
the general case. Finally, previous work was mostly of the-
oretical nature, analyzing the performance of the proposed
techniques using analytical cost formulas, and not taking
into account the fact that certain cryptographic primitives
do not feature idealistic characteristics in practice. For ex-
ample, trying to minimize the 1/O cost associated with the
construction of an authenticated structure does not take into
account the fact that generating signatures using popular
public signature schemes is two times slower than a ran-
dom disk page access on today’s computers. To the best of
our knowledge, no previous work ever conducted empirical
evaluations on a working prototype of existing techniques.

Our contributions. In this work, we: 1. Conduct a me-
thodical analysis of existing approaches over all six metrics,

Ling
Highlight

Ling
Highlight

Ling
Highlight

Ling
Highlight

Ling
Highlight

Ling
Highlight

Ny =H (r2) hy=H(x;

‘ ‘ LY ‘

Figure 1: Example of a Merkle hash tree.

‘ LY ‘ ‘ T2 ‘ ‘ 3

2. Propose a novel authenticated structure that best lever-
ages all metrics, 3. Formulate detailed cost models for all
techniques that take into account not only the usual struc-
tural maintenance overheads, but the cost of cryptographic
operations as well, 4. Discuss the extensions of the pro-
posed techniques for dynamic environments (where data is
frequently updated), 5. Consider possible solutions for guar-
anteeing query freshness, 6. Implement a fully working pro-
totype and perform a comprehensive experimental evalua-
tion and comparison of all alternatives.

We would like to point out that there are other security
issues in ODB systems that are orthogonal to the problems
considered here. Examples include: privacy-preservation is-
sues [14, 1, 10], secure query execution [12], security in con-
junction with access control requirements [20, 29, 5] and
query execution assurance [30]. In particular, query execu-
tion assurance of [30] does not provide authentication: the
server could pass the challenges and yet still return false
query results.

The rest of the paper is organized as follows. Section 2
presents background on essential cryptography tools, and a
brief review of related work. Section 3 discusses the authen-
ticated index structures for static ODB scenarios. Section
4 extends the discussion to the dynamic case and Section 5
addresses query freshness. Finally, the empirical evaluation
is presented in Section 6. Section 7 concludes the paper.

2. PRELIMINARIES

The basic idea of the existing solutions to the query au-
thentication problem is the following. The owner creates a
specialized data structure over the original database that is
stored at the servers together with the database. The struc-
ture is used by a server to provide a verification object VO
along with the answers, which the client can use for authen-
ticating the results. Verification usually occurs by means of
using collision-resistant hash functions and digital signature
schemes. Note that in any solution, some information that is
authentic to the owner must be made available to the client;
else, from the client’s point of view, the owner cannot be
differentiated from a (potentially malicious) server. Exam-
ples of such information include the owner’s public signature
verification key or a token that in some way authenticates
the database. Any successful scheme must make it compu-
tationally infeasible for a malicious server to find incorrect
query results and verification object that will be accepted by
a client who has the appropriate authentication information
from the owner.

2.1 Cryptography essentials

Collision-resistant hash functions. For our purposes, a
hash function H is an efficiently computable function that
takes a variable-length input z to a fixed-length output y =
H(z). Collision resistance states that it is computationally
infeasible to find two inputs, 1 # x2, such that H(z1)

122

H(z2). Collision-resistant hash functions can be built prov-
ably based on various cryptographic assumptions, such as
hardness of discrete logarithms [17]. However, in this work
we concentrate on using heuristic hash functions, which have
the advantage of being very fast to evaluate, and specifi-
cally focus on SHA1 [24], which takes variable-length inputs
to 160-bit (20-byte) outputs. SHAI is currently considered
collision-resistant in practice; we also note that any even-
tual replacement to SHA1 developed by the cryptographic
community can be used instead of SHA1 in our solution.

Public-key digital signature schemes. A public-key
digital signature scheme, formally defined in [11], is a tool
for authenticating the integrity and ownership of the signed
message. In such a scheme, the signer generates a pair of
keys (SK, PK), keeps the secret key SK secret, and pub-
lishes the public key PK associated with her identity. Sub-
sequently, for any message m that she sends, a signature s,
is produced by: sm = S(SK,m). The recipient of s, and m
can verify sp, via V(PK,m, sn,) that outputs “valid” or “in-
valid.” A valid signature on a message assures the recipient
that the owner of the secret key intended to authenticate
the message, and that the message has not been changed.
The most commonly used public digital signature scheme is
RSA [28]. Existing solutions [26, 27, 21, 23] for the query
authentication problem chose to use this scheme, hence we
adopt the common 1024-bit (128-byte) RSA. Its signing and
verification cost is one hash computation and one modular
exponentiation with 1024-bit modulus and exponent.

Aggregating several signatures. In the case when ¢ sig-
natures Si,...,S¢ on t messages mi,...,m; signed by the
same signer need to be verified all at once, certain signature
schemes allow for more efficient communication and veri-
fication than ¢ individual signatures. Namely, for RSA it
is possible to combine the ¢ signatures into a single aggre-
gated signature si+ that has the same size as an individual
signature and that can be verified (almost) as fast as an in-
dividual signature. This technique is called Condensed-RSA
[22]. The combining operation can be done by anyone, as
it does not require knowledge of SK; moreover, the secu-
rity of the combined signature is the same as the security of
individual signatures. In particular, aggregation of t RSA
signatures can be done at the cost of ¢ — 1 modular multi-
plications, and verification can be performed at the cost of
t — 1 multiplications, ¢ hashing operations, and one modular
exponentiation (thus, the computational gain is that ¢ — 1
modular exponentiations are replaced by modular multipli-
cations). Note that aggregating signatures is possible only
for some digital signature schemes.

The Merkle Hash Tree. An improvement on the straight-
forward solution for authenticating a set of data values is the
Merkle hash tree (see Figure 1), first proposed by [18]. It
solves the simplest form of the query authentication prob-
lem for point queries and datasets that can fit in main mem-
ory. The Merkle hash tree is a binary tree, where each leaf
contains the hash of a data value, and each internal node
contains the hash of the concatenation of its two children.
Verification of data values is based on the fact that the hash
value of the root of the tree is authentically published (au-
thenticity can be established by a digital signature). To
prove the authenticity of any data value, all the prover has
to do is to provide the verifier, in addition to the data value
itself, with the values stored in the siblings of the path that
leads from the root of the tree to that value. The veri-

Table 1: Notation used.

Symbol | Description

r A database record

k A BT-tree key

P A BT-tree pointer

h A hash value

s A signature

|| Size of object x

Np Total number of database records

Nr Total number of query results

P Page size

[z Node fanout of structure x

ds Height of structure x

Hi(x) A hash operation on input z of length [
Si(z) A signing operation on input z of length [
Vi(x) A verifying operation on input x of length [
Cs Cost of operation x

The verification object

fier, by iteratively computing all the appropriate hashes up
the tree, at the end can simply check if the hash she has
computed for the root matches the authentically published
value. The security of the Merkle hash tree is based on the
collision-resistance of the hash function used: it is computa-
tionally infeasible for a malicious prover to fake a data value,
since this would require finding a hash collision somewhere
in the tree (because the root remains the same and the leaf
is different—hence, there must be a collision somewhere in
between). Thus, the authenticity of any one of n data values
can be proven at the cost of providing and computing log, n
hash values, which is generally much cheaper than storing
and verifying one digital signature per data value. Further-
more, the relative position (leaf number) of any of the data
values within the tree is authenticated along with the value
itself.

Cost models for SHA1, RSA and Condensed-RSA.
Since all existing authenticated structures are based on SHA1
and RSA, it is imperative to evaluate the relative cost of
these operations in order to be able to draw conclusions
about which is the best alternative in practice. Based on
experiments with two widely used cryptography libraries,
Crypto++ [7] and OpenSSL [25], we obtained results for
hashing, signing, verifying and performing modulo multipli-
cations. Evidently, one hashing operation on our testbed
computer takes approximately 2 to 3 ps. Modular multi-
plication, signing and verifying are, respectively, approx-
imately 100, 10,000 and 1,000 times slower than hashing
(verification is faster than signing due to the fact that the
public verification exponent can be fixed to a small value).

Thus, it is clear that multiplication, signing and ver-
ification operations are very expensive, and comparable to
random disk page accesses. The cost of these operations
needs to be taken into account in practice, for the proper
design of authenticated structures. In addition, since the
cost of hashing is orders of magnitude smaller than that of
singing, it is essential to design structures that use as few
signing operations as possible, and hashing instead.

2.2 Previouswork

There are several notable works that are related to our
problem. A good survey is provided in [23]; our review
here is brief. The first set of attempts to address query
authentication problems in ODB systems appeared in [9, 8,

123

16]. The focus of these works is on designing solutions for
query correctness only, creating structures that are based on
Merkle trees. The work of [16] generalized the Merkle hash
tree ideas to work with any DAG (directed acyclic graph)
structure. With similar techniques, the work of [3] uses the
Merkle tree to authenticate XML documents in the ODB
model. The work of [27] further extended the idea and
introduced the VB-tree which was suitable for structures
stored on secondary storage. However, this approach is ex-
pensive and was later subsumed by [26]. Several proposals
for signature-based approaches addressing both query cor-
rectness and completeness appear in [23, 21, 26]. We are not
aware of work that specifically addresses the query freshness
issue.

Hardware support for secure data accesses is investi-
gated in [5, 4]. It offers a promising research direction for
designing query authentication schemes with special hard-
ware support. Lastly, distributed content authentication has
been addressed in [31], where a distributed version of the
Merkle hash tree is applied.

3. THE STATIC CASE

In this section we illustrate three approaches for query
correctness and completeness: a signature-based approach
similar to the ones described in [26, 23], a Merkle-tree-like
approach based on the ideas presented in [16], and our novel
embedded tree approach. We present them for the static sce-
nario where no data updates occur between the owner and
the servers on the outsourced database. We also present
analytical cost models for all techniques, given a variety of
performance metrics. As already mentioned, detailed ana-
lytical modeling was not considered in related literature and
is an important contribution of this work. It gives the ability
to the owners to decide which structure best satisfies their
needs, using a variety of performance measures.

In the following, we derive models for the storage, con-
struction, query, and authentication cost of each technique,
taking into account the overhead of hashing, signing, verify-
ing data, and performing expensive computations (like mod-
ular multiplications of large numbers). The analysis consid-
ers range queries on a specific database attribute A indexed
by a Bt-tree [6]. The size of the structure is important
first for quantifying the storage overhead on the servers, and
second for possibly quantifying the owner/server communi-
cation cost. The construction cost is useful for quantifying
the overhead incurred by the database owner for outsourc-
ing the data. The query cost quantifies the incurred server
cost for answering client queries, and hence the potential
query throughput. The authentication cost quantifies the
server/client communication cost and, in addition, the client
side incurred cost for verifying the query results. The nota-
tion used is summarized in Table 1. In the rest, for ease of
exposition, it is assumed that all structures are bulk-loaded
in a bottom-up fashion and that all index nodes are com-
pletely full. In addition, all divisions are assumed to have
residual zero. Our results can easily be extended to the
general case.

3.1 Aggregated Signatureswith B*-trees

The first authenticated data structure for static envi-
ronments is a direct extension of aggregated signatures and
ideas that appeared in [23, 26]. To guarantee correctness and
completeness the following technique can be used: First, the
owner individually hashes and signs all consecutive pairs of
tuples in the database, assuming some sorted order on a

Ling
Highlight

Ling
Highlight

&) 7

S(ralrs)

3

S(rslrs) Sralre)

m T
S(rilr2)

Figure 2: The signature-based approach.

given attribute A. For example, given two consecutive tu-
ples r;,7; the owner transmits to the servers the pair (r;, s;),
where s; = S(ri|r;) (‘|” denotes some canonical pairing of
strings that can be uniquely parsed back into its two com-
ponents; e.g., simple string concatenation if the lengths are
fixed). The first and last tuples can be paired with special
marker records. Chaining tuples in this way will enable the
clients to verify that no in-between tuples have been dropped
from the results or modified in any way. An example of this
scheme is shown in Figure 2.

In order to speed up query execution on the server side
a Bt-tree is constructed on top of attribute A. To answer
a query the server constructs a VO that contains one pair
rq|8q per query result. In addition, one tuple to the left of
the lower-bound of the query results and one to the right
of the upper-bound is returned, in order for the client to
be able to guarantee that no boundary results have been
dropped. Notice that since our completeness requirements
are less stringent than those of [26] (where they assume
that database access permissions restrict which tuples the
database can expose to the user), for fairness we have sim-
plified the query algorithm substantially here.

There are two obvious and serious drawbacks associ-
ated with this approach. First, the extremely large VO size
that contains a linear number of signatures w.r.t. Ng, tak-
ing into account that signatures sizes are very large. Second,
the high verification cost for the clients. Authentication re-
quires Ng verification operations which, as mentioned ear-
lier, are very expensive. To solve this problem one can use
the aggregated signature scheme discussed in Section 2.1.
Instead of sending one signature per query result the server
can send one combined signature s™ for all results, and the
client can use an aggregate verification instead of individual
verifications.

By using aggregated RSA signatures, the client can au-
thenticate the results by hashing consecutive pairs of tuples
in the result-set, and calculating the product m™ = qu hq
(mod n) (where n is the RSA modulus from the public key of
the owner). It is important to notice that both s™ and m™
require a linear number of modular multiplications (w.r.t.
Ngr). The cost models of the aggregated signature scheme
for the metrics considered are as follows:

Node fanout: The node fanout of the B'-tree structure
is:

P —p|
= (1)
k| + |p|

Storage cost: The total size of the authenticated structure
(excluding the database itself) is equal to the size of the B -
tree plus the size of the signatures. For a total of Np tuples
the height of the tree is equal to do = log; Np, consisting

fa +1.

_ fla-1 . ~da—1 gi .)
of Ni = =— (= >_i2, fa) nodes in total. Hence:
a faa —1
=P.-—+ Np - |s]|. 2
e = Ly @

124

The storage cost also reflects the initial communica-
tion cost between the owner and servers. Notice that the
owner does not have to upload the BT-tree to the servers,
since the latter can rebuild it by themselves, which will re-
duce the owner/server communication cost but increase the
computation cost at the servers. Nevertheless, the cost of
sending the signatures cannot be avoided.

Construction cost: The cost incurred by the owner for
constructing the structure has three components: the sig-
nature computation cost, bulk-loading the B*-tree, and the
1/0 cost for storing the structure. Since the signing opera-
tion is very expensive, it dominates the overall cost. Bulk-
loading the B'-tree in main memory is much less expensive
and its cost can be omitted. Hence:

a

a CS
Cé =Np - (Cnp, +Csy) +

P 'C[O.

®3)

VO construction cost: The cost of constructing the VO
for a range query depends on the total disk I/O for traversing
the BT-tree and retrieving all necessary record/signature
pairs, as well as on the computation cost of s™. Assuming
that the total number of leaf pages accessed is Ng = %"‘,
the VO construction cost is:

Nr-|r| . Nr-|s|
P P
where the last term is the modular multiplication cost for
computing the aggregated signature, which is linear to Nrg.
The I/O overhead for retrieving the signatures is also large.

Authentication cost: The size of the VO is equal to the
result-set size plus the size of one signature:

[VO|* = Ng - |r| + |s].

Cqi=(Ng+da—1+

+)-Cro +Csm, (4)

()

The cost of verifying the query results is dominated by the
hash function computations and modular multiplications at
the client:

Cy = Ng -Cx,, + Cour + Cy, (6)

where the modular multiplication cost for computing the
aggregated hash value is linear to the result-set size Ng, and
the size of the final product has length in the order of |n|
(the RSA modulus). The final term is the cost of verifying
the product using s™ and the owner’s public key.

It becomes obvious now that one advantage of the ag-
gregated signature scheme is that it features small VO sizes
and hence small client/server communication cost. On the
other hand it has the following serious drawbacks: 1. Large
storage overhead on the servers, dominated by the large sig-
nature sizes, 2. Large communication overhead between the
owners and the servers that cannot be reduced, 3. A very
high initial construction cost, dominated by the cost of com-
puting the signatures, 4. Added I/O cost for retrieving sig-
natures, linear to Ng, 5. An added modular multiplication
cost, linear to the result-set size, for constructing the VO
and authenticating the results. Our experimental evalua-
tion shows that this cost is significant compared to other
operations, 6. The requirement for a public key signature
scheme that supports aggregated signatures. For the rest of
the paper, this approach is denoted as Aggregated Signa-
tures with Bt-trees (ASB-tree).

3.2 TheMerkleB-tree

Motivated by the drawbacks of the ASB-tree, we present
a different approach for building authenticated structures

n|>

k; D) hj=H(hy|...|hs)

—

hi=H(r;) }

i

Figure 3: An MB-tree node.

return h; m

—

14 ‘ [5 ‘ IG ‘ ‘ 17 ‘ [8 ‘

L ‘]2 ‘13

. [Ll Ly ||Ls || Ly || Ls Le] [L7 Ls || Lo || Lio|| L le]
~
return h; Po return r;

Figure 4: A query traversal on an MB-tree. At
every level the hashes of the residual entries on the
left and right boundary nodes need to be returned.

that is based on the general ideas of [16] (which utilize the
Merkle hash tree) applied in our case on a B -tree structure.
We term this structure the Merkle B-tree (MB-tree).

As already explained in Section 2.1, the Merkle hash
tree uses a hierarchical hashing scheme in the form of a bi-
nary tree to achieve query authentication. Clearly, one can
use a similar hashing scheme with trees of higher fanout and
with different organization algorithms, like the BT -tree, to
achieve the same goal. An MB-tree works like a BT -tree
and also consists of ordinary BT-tree nodes that are ex-
tended with one hash value associated with every pointer
entry. The hash values associated with entries on leaf nodes
are computed on the database records themselves. The hash
values associated with index node entries are computed on
the concatenation of the hash values of their children. For
example, an MB-tree is illustrated in Figure 3. A leaf node
entry is associated with a hash value h = H(r;), while an in-
dex node entry with h = H(hi|- - |hy,,), where hi,... Ay,
are the hash values of the node’s children, assuming fanout
fm per node. After computing all hash values, the owner
has to sign the hash of the root using the private key.

To answer a range query the server builds a VO by
initiating two top-down BT-tree like traversals, one to find
the left-most and one the right-most query result. At the
leaf level, the data contained in the nodes between the two
discovered boundary leaves are returned, as in the normal
Bt-tree. The server also needs to include in the VO the
hash values of the entries contained in each index node that
is visited by the lower and upper boundary traversals of the
tree, except the hashes to the right (left) of the pointers that
are traversed during the lower (upper) boundary traversals.
At the leaf level, the server inserts only the answers to the
query, along with the hash values of the residual entries to
the left and to the right parts of the boundary leaves. The
result is also increased with one tuple to the left and one to
the right of the lower-bound and upper-bound of the query
result respectively, for completeness verification. Finally,
the signed root of the tree is inserted as well. An example
query traversal is shown in Figure 4.

The client can iteratively compute all the hashes of the
sub-tree corresponding to the query result, all the way up to
the root using the VO. The hashes of the query results are
computed first and grouped into their corresponding leaf

125

nodes!, and the process continues iteratively, until all the
hashes of the query sub-tree have been computed. After the
hash value of the root has been computed, the client can
verify the correctness of the computation using the owner’s
public key and the signed hash of the root. It is easy to see
that since the client is forced to recompute the whole query
sub-tree, both correctness and completeness is guaranteed.
It is interesting to note here that one could avoid building
the whole query sub-tree during verification by individually
signing all database tuples as well as each node of the B™-
tree. This approach, called VB-tree, was proposed in [27]
but it is subsumed by the signature based approach. The
analytical cost models of the MB-tree are as follows:

Node fanout: The node fanout in this case is:

P—|p|—|h
f Pl =1hl

SHgIu'.] il L
k[+ [pl + [R]

(M)
Notice that the maximum node fanout of the MB-trees is
considerably smaller than that of the ASB-tree, since the
nodes here are extended with one hash value per entry. This
adversely affects the total height of the MB-tree.

Storage cost: The total size is equal to:

C. P y— + sl
An important advantage of the MB-tree is that the storage
cost does not necessarily reflect the owner/server communi-
cation cost. The owner, after computing the final signature
of the root, does not have to transmit all hash values to
the server, but only the database tuples. The server can
recompute the hash values incrementally by recreating the
MB-tree. Since hash computations are cheap, for a small
increase in the server’s computation cost this technique will
reduce the owner/sever communication cost drastically.

(8)

Construction cost: The construction cost for building an
MB-tree depends on the hash function computations and the
total I/Os. Since the tree is bulk-loaded, building the leaf
level requires Np hash computations of length input |r|. In
addition, for every tree node one hash of input length f, - |h|
= fﬂ:n—ll
on average (given height d,,, = log; Np), the total number
of hash function computations, and hence the total cost for

constructing the tree is given by:

is computed. Since there are a total of N nodes

m

m ¢
C = Np - Crt + Ni-Cryyny +Csppy + 5

P : C[O.

)
VO construction cost: The VO construction cost is dom-
inated by the total disk I/O. Let the total number of leaf
pages accessed be equal to Ng = Ne g, = log; Np and
dq = log; Ngr be the height of the MB-tree and the query
sub-tree respectively. In the general case the index traversal
cost is:
Ng - |r|
—]-C 10
- ¢ro, (10)
taking into account the fact that the query traversal at some
point splits into two paths. It is assumed here that the
query range spans at least two leaf nodes. The first term
corresponds to the hashes inserted for the common path of
the two traversal from the root of the tree to the root of

Cq" = (dm —dq+1)+2(dg —2) + No +

!Extra node boundary information can be inserted in the
VO for this purpose with a very small overhead.

the query sub-tree. The second term corresponds to the two
traversals after they split. The last two terms correspond to
the leaf level of the tree and the database records.

Authentication cost: Assuming that po is the total num-
ber of query results contained in the left boundary leaf node
of the query sub-tree, oo on the right boundary leaf node,
and p;,0; the total number of entries of the left and right
boundary nodes on level i,1 < i < dg, that point towards
leaves that contain query results (see Figure 4), the size of
the VO is:

Vo =
(2fm — po — g0) | + Niv - || + |s] +

(dm — dq) - (fm = D)IR[+
dg—2
> (2fm —pi—oi)lh| +
i=1

(11)

This cost does not include the extra boundary information
needed by the client in order to group hashes correctly, but
this overhead is very small (one byte per node in the VO)
especially when compared with the hash value size. Conse-
quently, the verification cost on the client is:

(fm = pdg—1 — dag-1)|h|.

dg—1
C' = Nr - Crppy + D Fn Oty +
=0

(dm —dq) - CHfmw + CV\M'

Given that the computation cost of hashing versus sign-
ing is orders of magnitude smaller, the initial construction
cost of the MB-tree is expected to be orders of magnitude
less expensive than that of the ASB-tree. Given that the
size of hash values is much smaller than that of signatures
and that the fanout of the MB-tree will be smaller than
that of the ASB-tree, it is not easy to quantify the exact
difference in the storage cost of these techniques, but it is
expected that the structures will have comparable storage
cost, with the MB-tree being smaller. The VO construc-
tion cost of the MB-tree will be much smaller than that
of the ASB-tree, since the ASB-tree requires many I/Os for
retrieving signatures, and also some expensive modular mul-
tiplications. The MB-tree will have smaller verification cost
as well since: 1. Hashing operations are orders of magnitude
cheaper than modular multiplications, 2. The ASB-tree re-
quires Nr modular multiplications for verification. The only
drawback of the MB-tree is the large VO size, which in-
creases the client/server communication cost. Notice that
the VO size of the MB-tree is bounded by fm -log; Nbp.
Since generally f,, > log; Np, the VO size is essentially
determined by fy,, resulting in large sizes.

3.3 TheEmbedded Merkle B-tree

In this section we propose a novel data structure, the
Embedded Merkle B-tree (EMB-tree), that provides a nice,
adjustable trade-off between robust initial construction and
storage cost versus improved VO construction and verifica-
tion cost. The main idea is to have different fanouts for
storage and authentication and yet combine them in the
same data structure.

Every EMB-tree node consists of regular BT -tree en-
tries, augmented with an embedded MB-tree. Let f. be
the fanout of the EMB-tree. Then each node stores up to
fe triplets k;i|p;|hi, and an embedded MB-tree with fanout

(12)

126

k; ‘ pr | =H(hy1 |...| hyp)

]
\

pi | ly=H(r;)

embedded tree’s 100
el]
—

Figure 5: An EMB-tree node.

fr < fe. The leaf level of this embedded tree consists of the
fe entries of the node. The hash value at the root level of
this embedded tree is stored as an h; value in the parent of
the node, thus authenticating this node to its parent. Es-
sentially, we are collapsing an MB-tree with height d. - dx, =
log i Np into a tree with height d. that stores smaller MB-
trees of height dy within each node. Here, d. = log;, Np is
the height of the EMB-tree and di = logy, fe is the height
of each small embedded MB-tree. An example EMB-tree
node is shown in Figure 5.

For ease of exposition, in the rest of this discussion it
will be assumed that f. is a power of fi such that the embed-
ded trees when bulk-loaded are always full. The technical
details if this is not the case can be worked out easily. The
exact relation between f. and fi will be discussed shortly.
After choosing fr and fe, bulk-loading the EMB-tree is
straightforward: Simply group the Np tuples in groups of
size f. to form the leaves and build their embedded trees on
the fly. Continue iteratively in a bottom up fashion.

When querying the structure the server follows a path
from the root to the leaves of the external tree as in the
normal Bt-tree. For every node visited, the algorithm scans
all fo — 1 triplets k;|pi|h; on the data level of the embedded
tree to find the key that needs to be followed to the next
level. When the right key is found the server also initiates
a point query on the embedded tree of the node using this
key. The point query will return all the needed hash values
for computing the concatenated hash of the node, exactly
like for the MB-tree. Essentially, these hash values would
be the equivalent of the fo — 1 sibling hashes that would
be returned per node if the embedded tree was not used.
However, since now the hashes are arranged hierarchically
in an fr-way tree, the total number of values inserted in the
VO per node is reduced to (fi — 1)dy.

To authenticate the query results the client uses the
normal MB-tree authentication algorithm to construct the
hash value of the root node of each embedded tree (assum-
ing that proper boundary information has been included in
the VO for separating groups of hash values into different
nodes) and then follows the same algorithm once more for
computing the final hash value of the root of the EMB-tree.

The EMB-tree structure uses extra space for storing the
index levels of the embedded trees. Hence, by construction
it has increased height compared with the MB-tree due to
smaller fanout f.. A first, simple optimization for improving
the fanout of the EMB-tree is to avoid storing the embedded
trees altogether. Instead, each embedded tree can be instan-
tiated by computing fewer than f./(fr — 1) hashes on the
fly, only when a node is accessed during the querying phase.
We call this the EM B~ -tree. The EM B~ -tree is logically
the same as the EMB-tree, however its physical structure
is equivalent to an MB-tree with the hash values computed
differently. With this optimization the storage overhead is
minimized and the height of the EM B~ -tree becomes equal

to the height of the equivalent MB-tree. The trade-off is an
increased computation cost for constructing the VO. How-
ever, this cost is minimal as the number of embedded trees
that need to be reconstructed is bounded by the height of
the EM B~ -tree.

As a second optimization, one can create a slightly more
complicated embedded tree to reduce the total size of the
index levels and increase fanout f.. We call this the EM B*-
tree. Essentially, instead of using a BT-tree as the base
structure for the embedded trees, one can use a multi-way
search tree with fanout fi while keeping the structure of the
external EMB-tree intact. The embedded tree based on B™-

d

fJfk_—_ll nodes while, for example,
a B-tree based embedded tree (recall that a B-tree is equiv-
alent to a balanced multi-way search tree) would contain
N; j{zj nodes instead. A side effect of using multi-way
search trees is that the cost for querying the embedded tree
on average will decrease, since the search for a particular key
might stop before reaching the leaf level. This will reduce
the expected cost of VO construction substantially. The
technical details associated with embedding the multi-way
tree in the F M B*-tree nodes are included in the full version
of the paper [15].

Below we give the analytical cost models of the EMB-
tree. The cost models for the EM B*-tree and EM B~ -tree
are similar and for brevity their detailed analysis appears in
the full version of the paper [15].

trees has a total of N; =

Node fanout: For the EMB-tree, the relationship between
fe and fy is given by:

P>
lngk fe—1

f -1
ka[fk(llﬂ + Ipl + [A]) — &[] +

[fe(Ik] + |pl + |hl) — [K[].
First, a suitable fi is chosen such that the requirements for

authentication cost and storage overhead are met. Then, the
maximum value for f. satisfying (13) can be determined.

(13)

Storage cost: The storage cost is equal to:

Ce —pP. fede -1

s fe — 1

Construction cost: The total construction cost is the cost
of constructing all the embedded trees plus the I/Os to write

de _

the tree back to disk. Given a total of Ny = f;€_1
dy _

the tree and N; = % nodes per embedded tree, the cost

is:

+ |s|. (14)

1 .
nodes in

e

e Cs
Ce =Np-Cr, + Nr-Ni-Crp) +Cs), + 5 - Cro. (15)

It should be mentioned here that the cost for constructing
the EM B~ -tree is exactly the same, since in order to find
the hash values for the index entries of the trees one needs to
instantiate all embedded trees. The cost of the EM B*-tree
is somewhat smaller than (15), due to the smaller number
of nodes in the embedded trees.

VO construction cost: The VO construction cost is domi-
nated by the total I/O for locating and reading all the nodes
containing the query results. Similarly to the MB-tree case:

Ng - |r|
P

Ce = [(de —dq+ 1) +2(dg — 2) + Ng +]-Cro, (16)

127

where dg is the height of the query sub-tree and Ng = % is
the number of leaf pages to be accessed. Since the embedded
trees are loaded with each node, the querying computation
cost associated with finding the needed hash values is ex-
pected to be dominated by the cost of loading the node in
memory, and hence it is omitted. It should be restated here
that for the EM B*-tree the expected VO construction cost
will be smaller, since not all embedded tree searches will
reach the leaf level of the structure.

Authentication cost: The embedded trees work exactly
like MB-trees for point queries. Hence, each embedded tree
returns (fr — 1)di hashes. Similarly with the MB-tree the
total size of the VO is:

VOI|* = Ng - |r| + |s|+
dq—2 dm—1

> 2ol + Vo™ + > (fi — Ddklh], (17)

0 dq

where [VO|™ is the cost of a range query on the embedded
trees of the boundary nodes contained in the query sub-
tree given by equation (11), with query range that covers all
pointers to children that cover the query result-set.

The verification cost is:

dg—1
Co=Nr-Crpy + > fo-Crt (de —dg) - Ci+Cypy, (18)

i=0
where C, = N; 'Cka\h\ is the cost for constructing the con-
catenated hash of each node using the embedded tree.

For fr = 2 the authentication cost becomes equal to a
Merkle hash tree, which has the minimal VO size but higher
verification time. For fi > f. the embedded tree consists of
only one node which can actually be discarded, hence the
authentication cost becomes equal to that of an MB-tree,
which has larger VO size but smaller verification cost. No-
tice that, as fr becomes smaller, f. becomes smaller as well.
This has an impact on VO construction cost and size, since
with smaller fanout the height of the EMB-tree increases.
Nevertheless, since there is only a logarithmic dependence
on f. versus a linear dependence on fi, it is expected that
with smaller f; the authentication related operations will
become faster.

34 General Query Types

The proposed authenticated structures can support other
query types as well. Due to lack of space we briefly discuss
here a possible extension of these techniques for join queries.
Other query types that can be supported are projections and
multi-attribute queries.

Assume that we would like to provide authenticated
results for join queries such as R a,=4a; S, where A; €
R and A; € S (R and S could be relations or result-sets
from other queries), and authenticated structures for both
A; in R and A; in S exist. The server can provide the
proof for the join as follows: 1. Select the relation with
the smaller size, say R, 2. Construct the VO for R (if R
is an entire relation then VO contains only the signature
of the root node from the index of R), 3. Construct the
VOs for each of the following selection queries: for each
record i in R, gx =“SELECT * FROM S WHERE r.A; =
rr.A;”. The client can easily verify the join results. First,
it authenticates that the relation R is complete and correct.
Then, using the VO for each query g, it makes sure that it is
complete for every k (even when the result of gx is empty).

After this verification, the client can construct the results
for the join query and be sure that they are complete and
correct.

4. THE DYNAMIC CASE

Surprisingly, previous work has not dealt with dynamic
scenarios where data gets updated at regular time intervals.
In this section we analyze the performance of all approaches
given dynamic updates between the owner and the servers.
In particular we assume that either insertions or deletions
can occur to the database, for simplicity. The performance
of updates in the worst case can be considered as the cost
of a deletion followed by an insertion. There are two con-
tributing factors for the update cost: computation cost such
as creating new signatures and computing hashes, and I/O
cost.

4.1 Aggregated Signatureswith B+-trees

Suppose that a single database record r; is inserted in
or deleted from the database. Assuming that in the sorted
order of attribute A the left neighbor of r; is ;1 and the
right neighbor is 7;41, for an insertion the owner has to com-
pute signatures S(r;—1|r;) and S(r;|ri+1), and for a deletion
S(ri—1|ri+1). For k consecutive updates in the best case a
total of k + 2 signature computations are required for inser-
tions and 1 for deletions if the deleted tuples are consecutive.
In the worst case a total of 2k signature computations are
needed for insertions and k for deletions, if no two tuples are
consecutive. Given k updates, suppose the expected number
of signatures to be computed is represented by E{k}. Then
the additional I/O incurred is equal to w
the I/Os incurred for updating the BT -tree structure. Since
the cost of signature computations is larger than even the
1/0 cost of random disk accesses, a large number of updates
is expected to have a very expensive updating cost. The ex-
perimental evaluation verifies this claim. The total update
cost for the ASB-tree is:

, excluding

ca=m(ky-c,+ ZE B o (19)

42 TheMerkleB-tree

The MB-tree can support efficient updates since only
hash values are stored for the records in the tree and, first,
hashing is orders of magnitude faster then signing, second,
for each tuple only the path from the affected leaf to the root
need to be updated. Hence, the cost of updating a single
record is dominated by the cost of I/Os. Assuming that no
reorganization to the tree occurs the cost of an insertion is
Cu* = Hjp) + dm(H, n) + Cro) + Spa-

In realistic scenarios though one expects that a large
number of updates will occur at the same time. In other
cases the owner may decide to do a delayed batch process-
ing of updates as soon as enough changes to the database
have occurred. The naive approach for handling batch up-
dates would be to do all updates to the MB-tree one by
one and update the path from the leaves to the root once
per update. Nevertheless, in case that a large number of
updates affect a similar set of nodes (e.g., the same leaf)
a per tuple updating policy performs an unnecessary num-
ber of hash function computations on the predecessor path.
In such cases, the computation cost can be reduced signifi-
cantly by recomputing the hashes of all affected nodes only
once, after all the updates have been performed on the tree.
A similar analysis holds for the incurred I/O as well.

128

Clearly, the total update cost for the per tuple update
approach for k insertions is k - C;* which is linear to the
number of affected nodes k - d,,. The expected cost of k
updates using batch processing can be computed as follows.
Given k updates to the MB-tree, assuming that all tuples
are updated uniformly at random and using a standard balls
and bins argument, the probability that leaf node X has
been affected at least once is P(X) =1 — (1 — —=—)* and

T —1
the expected number of leaf nodes that have been affected
is fdm=1. P(X). Using the same argument, the expected
number of nodes at level i (where i = 1 is the leaf level
and 1 < i< dy)is f&m " P;(X), where P;(X) =[1— (1 —
1)k] Hence, for a batch of k updates the total expected

T
number of nodes that will be affected is:

dm—1

B{X}= Y fall-(-

k
Hence, the expected MB-tree update cost for batch updates
is

(20)

Ci' =k-Hy + E{X} (H, n + C10) + Sjny-

In order to understand better the relationship between
the per-update approach and the batch-update, we can find
the closed form for E{X} as follows:

S It fi (1 — (Lalyky
Sdm (1= (1 - A
St
Sogm
kdm =305, (5) (D) iy (3

S ST L

The second term quantifies the cost decrease afforded by the
batch update operation, when compared to the per update
cost.

For non-uniform updates to the database, the batch up-
dating technique is expected to work well in practice given
that in real settings updates exhibit a certain degree of local-
ity. In such cases one can still derive a similar cost analysis
by modeling the distribution of updates.

4.3 TheEmbedded MB-tree

The analysis for the EMB-tree is similar to the one for
MB-trees. The update cost for per tuple updates is equal to
k-Cy, where C; = M, +dclogy, fe:(Hy, n+Cio)+S|a), once
again assuming that no reorganizations to the tree occur.
Similarly to the MB-tree case the expected cost for batch
updates is equal to:

Co=k-Hy +E{X} log; fe-(Hyn +Cro) + S (22)

(21)

kd,

4.4 Discussion

For the ASB-tree, the communication cost for updates
between owner and servers is bounded by E{K}|s|, and
there is no possible way to reduce this cost as only the owner
can compute signatures. However, for the hash based index
structures, there are a number of options that can be used
for transmitting the updates to the server. The first option
is for the owner to transmit only a delta table with the up-
dated nodes of the MB-tree (or EMB-tree) plus the signed
root. The second option is to transmit only the signed root

and the updates themselves and let the servers redo the nec-
essary computations on the tree. The first approach mini-
mizes the computation cost on the servers but increases the
communication cost, while the second approach has the op-
posite effect.

5. QUERY FRESHNESS

The dynamic scenario reveals a third dimension of the
query authentication problem that has not been sufficiently
explored in previous work: namely, query result freshness.
When the owner updates the database, a malicious or com-
promised server may still retain an older version. Because
the old version was authenticated by the owner, the client
will still accept it as authentic, unless it receives some extra
information to indicate that this is no longer the case. In
fact, a malicious server may choose any of the previous ver-
sions, and in some scenarios even a combination of them. If
the client wishes to be sure that the version is not only au-
thentic, but is also the most recent version available, some
additional work is necessary.

This issue is similar to the problem of ensuring the
freshness of signed documents, which has been studied ex-
tensively, particularly in the context of certificate validation
and revocation. There are many solutions which we do not
review here. The simplest is to publish a list of revoked
signatures; more sophisticated ones are: including the time
interval of validity as part of the signed message and reissu-
ing the signature after the interval expires, and using hash
chains to confirm validity of signatures at frequent inter-
vals [19].

The advantage of all Merkle tree based solutions pre-
sented here is that any of these approaches can be applied
directly to the single signature of the root of the tree, be-
cause this signature alone authenticates the whole database.
Thus, whatever solution to the signature freshness problem
one uses, it needs to be used only for one signature and fresh-
ness will be assured. Each update will require re-issuing one
signature only.

This is in contrast to the ASB-tree approach, which
uses multiple signatures. It is unclear how to solve the
freshness problem for the ASB-tree without applying the
freshness techniques to each signature individually, which
will be prohibitively expensive because of the sheer number
of signatures.

6. EXPERIMENTAL EVALUATION

For our experimental evaluation we have implemented
the aggregated signatures technique using a B*-tree (ASB-

tree), the MB-tree, the EMB-tree and its two variants, EMB™ -

tree and EMB*-tree. To the best of our knowledge, this
work is the first that performs simulations on a working pro-
totype. Previous work has used only analytical techniques
that did not take into account important parameters. A well
designed experimental evaluation can reveal many interest-
ing issues that are hidden when only theoretical aspects are
considered. In addition, empirical evaluations help verify
the correctness of the developed cost models. The proto-
type can be downloaded from [2].

6.1 Setup

We use a synthetic database that consists of one ta-
ble with 100,000 tuples. Each tuple contains multiple at-
tributes, a primary key A, and is 500 bytes long. For sim-
plicity, we assume that an authenticated index is build on A,

129

Fanout toem ASB-Tree mmmm

120 Avg Fanout Bz MB-Tree 220
Root Fanout 5 EMB-Tree

EMB-Tree 1

ASB-Tree EMB*-Tree 1

Fanout
Height
w

MB-Tree EMB-Tree

(a) Fanout

Figure 6: Index parameters.

with page size equal to 1 KByte. All experiments are per-
formed on a Linux machine with a 2.8GHz Intel Pentium 4
CPU.

The cost Cro of one I/O operation on this machine us-
ing 1KByte pages for the indexes is on average 1 ms for a
sequential read and 15 ms for random access. The costs Cyx
of hashing a message with length 500 bytes is approximately
equal to 3 us. In comparison, the cost Cs of signing a mes-
sage with any length is approximately equal to 34 ms. The
cost of one modular multiplication with 128 byte modulus is
close to 200 us. To quantify these costs we used the publicly
available Crypto++ [7] and OpenSSL [25] libraries.

6.2 Performance Analysis

We run experiments to evaluate the proposed solutions
under all metrics. First, we test the initial construction cost
of each technique. Then, we measure their query and verifi-
cation performance. Finally, we run simulations to analyze
their performance for dynamic scenarios. For various em-
bedded index structures, the fanout of their embedded trees
is set to 2 by default, except if otherwise specified.

6.2.1 Construction Cost

First we evaluate the physical characteristics of each
structure, namely the maximum and average fanout, and the
height. The results are shown in Figure 6. As expected, the
ASB-tree has the maximum fanout and hence the smallest
height, while the opposite is true for the EMB-tree. How-
ever, the maximum height difference, which is an important
measure for the number of additional I/Os per query when
using deeper structures, is only 2. Of course this depends on
the database size. In general, the logarithmic relation be-
tween the fanout and the database size limits the difference
in height of the different indices.

Next, we measure the construction cost and the total
size of each structure, which are useful indicators for the
owner /server computation overhead, communication cost and
storage demands. Figure 7(a) clearly shows the overhead im-
posed on the ASB-tree by the excessive signature computa-
tions. Notice on the enclosed detailed graph that the over-
head of other authenticated index structures in the worst
case is twice as large as the cost of building the Bt-tree
of the ASB-tree approach. Figure 7(b) captures the total
size of each structure. Undoubtedly, the ASB-tree has the
biggest storage overhead. The EMB-tree is storage demand-
ing as well since the addition of the embedded trees decreases
the index fanout substantially. The MB-tree has the least
storage overhead and the EM B™*-tree is a good compromise
between the MB-tree and the EMB-tree for this metric. No-
tice that the proposed cost models capture very accurately
the tree sizes.

4000

18000
ASB-Tree Actual Size Zzzz1
Cost Model [x<x1
200 " 15000 [ASB-Tree
ASB B’ Tree Hmm 7R3
n MB-Tree =1 D 12000 e
1™ 8 EMB-Tree =2 g
8 EVB-Tree % Al
8 6 EMB*-Tree ——1 ¢ 9000 30
= ~ o
o 1600 g K
E 4 w6000 o]
800 2 3000 &
i & o]
2l
0 0
(a) Time

Figure 7: Index construction cost.

240000 0.6
ASB-Tree mmmm

Actual Time £z
MB-Tree =1 Cost Model =z
EMB-Tree EEET
EMB™-Tree 21
EMB*-Tree 1

200000

EMB-Tree EMB™-Tree
5! EMB*-Tree

g o

%

s

K

160000

39

22

MB-Tree
ASB-Tree

2%
2%

s

%
252
2o%s)

2

RS
s
5

120000

%

%
5%
252

2

Hashes (#)

>
e%2
ooz
o202

80000

e
2

s
S5

Time (seconds)
s
b
IR
SEE
SRS

2R
o252e
25
2505

o
$%2

40000

=

2

S5

TS

225202
>
52

2

2%

i2e%
s
a2

B2z

26252
5355
B

0

(a) Hash computations

Figure 8: Hash computation overhead.

The client/server communication cost using the sim-
plest possible strategy is directly related to the size of the
authenticated structures. It should be stressed however that
for the hash based approaches this cost can be reduced sig-
nificantly by rebuilding the trees at the server side. In con-
trast, the ASB-tree is not equally flexible since all signatures
have to be computed at the owner.

The construction cost of our new authenticated index
structures has two components. The I/O cost for building
the trees and the computational cost for computing hash
values. Figure 8 shows the total number of hash computa-
tions executed per structure, and the total time required.
Evidently, the EMB-tree approaches increase the number of
hashes that need to be computed. However, the additional
computation time increases by a small margin as hashing is
cheap, especially when compared with the total construction
overhead (see Figure 7). Thus, the dominating cost factor
proves to be the I/O operations of the index.

6.2.2 Query and Verification Cost

In this section we study the performance of the struc-
tures for range queries. We generate a number of synthetic
query workloads with range queries of given selectivity. Each
workload contains 100 range queries generated uniformly at
random over the domain of A. Results reflect the average
case, where the cost associated with accessing the actual
records in the database has not been included. A 100 page
LRU buffer is used, unless otherwise specified. In the rest of
the experiments we do not include the cost model analysis
not to clutter the graphs.

The results are summarized in Figure 9. There are two
contributing cost factors associated with answering range
queries. The first is the total number of I/Os. The second is
the computation cost for constructing the VO. The number
of I/Os can be further divided into query specific I/Os (i.e.,
index traversal I/Os for answering the range query) and VO
construction related I/Os.

Figure 9(a) shows the query specific I/Os as a func-
tion of selectivity. Straightforwardly, the number of page

130

T T
ASB-Tree ——
10 MB-Tree
EMB-Tree -
EMB-Tree &
EMB*-Tree

T T
ASB-Tree ——
5 MB-Tree
EMB-Tree -
EMB-Tree &
EMB*-Tree

Time (seconds)
w
Time (seconds)

0 0.1 0.2 03 04 05 06 0 01 02 03 04 05 06
Selectivity Selectivity

(a) Query runtime with (b) Query runtime with-
LRU buffer. out LRU buffer.

Figure 10: The effect of the LRU buffer.

access is directly related to the fanout of each tree. Notice
that the majority of page access is sequential I/O at the
leaf level of the trees. Figure 9(b) shows the additional I/O
needed by each structure for completing the VO. Evidently,
the ASB-tree has to perform a very large number of sequen-
tial I/Os for retrieving the signatures of the results. Our
authenticated index structures need to do only a few (upper
bounded by the height of the index) extra random accesses
for traversing the path that leads to the upper boundary
tuple of the query result. Figure 9(c) shows the total I/O
incurred by the structures. It is clear that the ASB-tree has
the worst performance overall, even though its query specific
performance is the best.

Figure 9(d) shows the runtime cost of additional com-
putations that need to be performed for modular multipli-
cations and hashing operations. The ASB-tree has an added
multiplication cost for producing the aggregated signature.
This cost is linear to the query result-set size and cannot
be omitted when compared with the I/O cost. This obser-
vation is instructive since it shows that one cannot evalu-
ate analytically or experimentally authenticated structures
correctly only by examining I/O performance. Due to ex-
pensive cryptographic computations, I/O operations are not
always a dominating factor. The EM B~ -tree has a minor
computation overhead, depending only on the fanout of the
conceptual embedded tree. The rest of the structures have
no computation overhead at all.

Interesting conclusions can be drawn by evaluating the
effects of the main memory LRU buffer. Figure 10 shows the
total query runtime of all structures with and without the
LRU buffer. We can deduce that the LRU buffer reduces the
query cost substantially for all techniques. We expect that
when a buffer is available the computation cost is the dom-
inant factor in query runtime, and the ASB-tree obviously
has much worse performance, while without the buffer the
1/0 cost should prevail. However, since overall the ASB-tree
has the largest I/O cost, the hash based structures still have
better query performance.

Finally, we measure the VO size and verification cost
at the client side. The results are shown in Figure 11.
The ASB-tree, as a result of using aggregated signatures
always returns only one signature independent of the result-
set size. The MB-tree has to return f, logfm Np number of
hashes plus one signature. As fn, > log; Np the fanout
is the dominating factor, and since the MB-tree has a rel-
atively large fanout, the VO size is large. The EMB-tree
and its variants, logically work as an MB-tree with fanout
fx and hence their VO sizes are significantly reduced, since
fm > fr. Notice that the EM B*-tree has the smallest VO
among all embedded index structures, as the searches in its
embedded multi-way search trees can stop at any level of
the tree, reducing the total number of hashes.

T T T T T T T T

4500 ASB-Tree —+— o ASB-Tree —+—
MB-Tree 6000 MB-Tree

4000 EMB-Tree -~ EMB-Tree -

3500 EMB"Tree & 5000 EMB™-Tree &

EMB*-Tree EMB*-Tree

Query /0 (#)
Additional 1/0 (#)

4
3 ko
2
1
0

03
Selectivity
(b) YO construction spe-
cific I/Os.

03 0.4 05
Selectivity

(a) Query specific I/Os.

0 0.1 0.2 0.6 0

Total /O (#)

7000

T T T T T
ASB-Tree —+— ASB-Tree —+—

6000 MB-Tree 5 MB-Tree
EMB-Tree % EMB-Tree %

5000 EMB’-Tree & x 4 EMB-Tree &
EMB*-Tree EMB*-Tree

4000
3000

Time (seconds)
w

2000
1000

03 04
Selectivity

(d) Additional computa-
tion cost.

04 05 0.6

Selectivity

(c) Total /0.

Figure 9: Performance analysis for range queries.

2000

T T
ASB-Tree ——
MB-Tree
EMB-Tree -%-
EMB"-Tree &
EMB*-Tree

T T
ASB-Tree —+—
MB-Tree 5
EWB-Treg™: %
EMB-Tree &
EMB*-Tree

1600

1200

800

Size (bytes)
Time (seconds)
w

40 1

02 03 04
Selectivity

(b) Verification time.

0 . . H eaf
03 04 05 06 0 0.1
Selectivity

(a) VO size.

0 01 02 05 06

Figure 11: Authentication cost.

The verification cost for the ASB-tree is linear to the
size of the query result-set due to the modular multiplica-
tion operations, resulting in the worst performance. For the
other approaches the total cost is determined by the total
hashes that need to be computed. Interestingly, even though
the MB-tree has the largest VO size, it has the fastest veri-
fication time. The reason is that for verification the number
of hash computations is dominated by the height of the in-
dex, and the MB-tree has much smaller height compared to
the other structures.

6.2.3 Update Cost

There are two types of update operations, insertions
and deletions. To expose the behavior of each update type,
we perform experiments on update workloads that contain
either insertions or deletions. Each update workload con-
tains 100 batch update operations, where each batch opera-
tion consists of a number of insertions or deletions, ranging
from a ratio o = 1% to 50% of the total database size before
the update occurs. Each workload contains batch operations
of equal ratio. We average the results on a per batch update
operation basis. Two distributions of update operations are
tested. Ones that are generated uniformly at random, and
ones that exhibit a certain degree of locality. Due to lack
of space we present here results only for uniform insertions.
Deletions worked similarly. Skewed distributions exhibit a
somewhat improved performance and have similar effects on
all approaches. Finally, results shown here include only the
cost of updating the structures and not the cost associated
with updating the database.

Figure 12 summarizes the results for insertion opera-
tions. The ASB-tree requires computing between o Np + 1
and 20 Np signatures. Essentially, every newly inserted tu-
ple requires two signature computations, unless if two new
tuples are consecutive in order in which case one computa-
tion can be avoided. Since the update operations are uni-
formly distributed, only a few such pairs are expected on
average. Figure 12(a) verifies this claim. The rest of the
structures require only one signature re-computation.

131

The total number of pages affected is shown in Fig-
ure 12(b). The ASB-tree needs to update both the pages
containing the affected signatures and the BT-tree struc-
ture. Clearly, the signature updates dominate the cost as
they are linear to the number of update operations. Other
structures need to update only the nodes of the index. Trees
with smaller fanout result in larger number of affected pages.
Even though the EMB™ -tree and MB-tree have smaller fanout
than the ASB-tree, they produce much smaller number of
affected pages. The EMB-tree and EMB™-tree produce the
largest number of affected pages. Part of the reason is be-
cause in our experiments all indexes are bulk-loaded with
70% utilization and the update workloads contain only in-
sertions. This will quickly lead to many split operations,
especially for indexes with small fanout, which creates a lot
of new pages.

Another contributing factor to the update cost is the
computation overhead. As we can see from Figure 12(c)
the ASB-tree obviously has the worst performance and its
cost is order of magnitudes larger than all other indexes, as
it has to perform linear number of signature computations
(w.r.t the number of update operations). For other indexes,
the computation cost is mainly due to the cost of hashing
operations and index maintenance. Finally, as Figure 12(d)
shows, the total update cost is simply the page I/O cost
plus the computation cost. Our proposed structures are the
clear winners. Finally the communication cost incurred by
update operations is equal to the number of pages affected.

6.2.4 Discussion

The experimental results clearly show that the authen-
ticated structures proposed in this paper perform better
than the state-of-the-art with respect to all metrics except
the VO size. Still, our optimizations reduced the size to
four times the size of the VO of the ASB-tree. Overall, the
E M B~ -tree gives the best trade-off between all performance
metrics, and it should be the preferred technique in the gen-
eral case. By adjusting the fanout of the embedded trees, we
obtain a nice trade-off between query (V O) size, verification
time, construction (update) time and storage overhead.

7. CONCLUSION

We presented a comprehensive evaluation of authenti-
cated index structures based on a variety of cost metrics
and taking into account the cost of cryptographic opera-
tions, as well as that of index maintenance. We proposed a
novel structure that leverages good performance based on all
metrics. We extended the work to dynamic environments,
which has not been explored in the past. We also formu-
lated the problem of query freshness, a direct outcome of
the dynamic case. Finally, we presented a comprehensive ex-

£ 120000 T T T T T 16000 T T T T X 3000 T T T T T 3000 T T T T T
2 WBE\SEZGND —— 00 ASB-Tree —+— ASB-Tree —+—
£ forst: 2ol £ MB-Tree MB-Tree
] 100000 Actud] - : 200 BT EpTree k- B e -
= o) a8) a8
5 800 4 om 2 am e g o BB Tee
2
£ oo — 150 8 150
§ . 3 o o
é. 40000 1 g 6000 e - E 1000 E 1000
= T 4000 MB-Tree
g 0000f " 3 EMB-Tree - 500 500
£ x F 2000 i EMB-Tree &
3 e . L EMBTee ol ‘ yra I Bowrmmmonr ‘
0 01 02 03 04 05 06 0 o1 02 03 04 05 08 0 01 02 03 04 05 06 0 01 02 03 04 05 06
Insertion ratio Insertion ratio Insertion ratio Insertion ratio
(a) Number of signature (b) Number of pages af- (¢) Computation cost. (d) Total update time.
re-computations. fected.
Figure 12: Performance analysis for insertions.
perimental evaluation to verify our claims. For future work, [15] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
we plan to extend our ideas for multidimensional structures, Authenticated Index Structures for Outsourced Database

Systems. Technical Report BUCS-TR_2006-004, CS
Department, Boston University, 2006.
[16] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong,

8. ACKNOWLEDGMENTS and S. Stubblebine. A general model for authenticated data

structures. Algorithmica, 39(1):21-41, 2004.
[17] K. McCurley. The discrete logarithm problem. In Proc. of
the Symposium in Applied Mathematics, pages 49-74.

and explore more involved types of queries.

This work was partially supported by NSF grants I1S-
0133825, CCR-0311485 and CCF-0515100. The authors would

like to thank the anonymous reviewers for their constructive American Mathematical Society, 1990.

comments. [18] R. C. Merkle. A certified digital signature. In Proc. of
Advances in Cryptology (CRYPTO), pages 218-238, 1989.

9. REFERENCES [19] S. Micali. Efficient certificate revocation. Technical Report

[1] R. Agrawal and R. Srikant. Privacy-preserving data mining. MIT/LCS/TM-542b, Massachusetts Institute of

In Proc. of ACM Management of Data (SIGMOD), pages TeChITOIOg}G Cambridg.e, MA, Mar.ch 1996. .
439-450. 2000. [20] G. Miklau and D. Suciu. Controlling access to published

. . data using cryptography. In Proc. of Very Large Data

[2] Authenticated Index Structures Library.
http://cs-people.bu.edu/lifeifei/aisl/. 91 gaiis k(IVLDBK/’[p;ges 8,98};909’ 3083'T dik

[3] E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, [21] E. Mykletun, M. Narasimha, and G. Tsudik.
and A. Gupta. Selective and authentic third-party Authent'lcatlon and integrity in ou?sourced databases. Ip
distribution of XML documents. IEEE Transactions on Symposium on Network and Distributed Systems Security
Knowledge and Data Engineering (TKDE), (NDSS), 2004. . . .
16(10):1263-1278, 2004. [22] E. Mykletun, M. Narasimha, and G. Tsudik. Signature

[4] L. Bouganim, C. Cremarenco, F. D. Ngoc, N. Dieu, and bouquets: Immutability for aggregated/condensed

P. Pucheral. Safe data sharing and data dissemination on signatures. In E@mpean Symposium on Research in
smart devices. In Proc. of ACgM Management of Data Computer Security (ESORICS), pages 160-176, 2004.

(SIGMOD), pages 888890, 2005. [23] M. Narasimha and G. Tsudik. Dsac: Integrity of

5] L Bouganir’n F. D. Ngoc 17:' Pucheral. and L. Wu outsourced databases with signature aggregation and
Chip-secured data access: Reconciling access rights with chaining. In Proc. of Conference on Information and
data encryption. In Proc. of Very Large Data Bases Knowledge Management (CIKM), pages 235-236, 2005.
(VLDB), pages 1133-1136, 2003. [24] National Institute of Standards and Technology. FIPS

6] D Come7r The ubi uitousz-tree ACM Computin PUB 180-1: Secure Hash Standard. National Institute of
Sﬁmeys 1'1(2).121337 1979 ’ P g Standards and Technology, 1995.

7] Crypto—l’—-l— Library. ’ [25] OpenSSL. http://www.openssl.org.
http://www.eskimo.com/~weidai/cryptlib.html. [26] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan.

[8] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine Verifying completeness of relational query results in data
Authentic data publication over the internet. Journal of pg}’g;?g% In Proc;loo;jlllCéMZ(I)\zl)gnag ement of Data
Computer Security, 11(3):291-314, 2003. (), pages ' i .

[9] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. [27) H. Pang and K.-L. Tan. Authenticating query results in
Authentic third-party data publication. In IFIP Workshop eDdgte cgmputmg. In IlchE' of Inter;gézﬁog;ail gggicerence on
on Database Security (DBSec), pages 101-112, 2000. ata Engineering (.), pages ’)

[10] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy 28] R. L.' Bivesi';, .A' Shamir, and L. Adle.man. A method for
breaches in privacy preserving data mining. In Proc. of obtaining digital signatures and public-key cryptosystems.

ACM Symposium on Principles of Database Systems %o;gmumcatlons of the ACM (CACM), 21(2):120-126,
(PODS), pages 211-222, 2003. .

[11] S. Goldwasser, S. Micali, and R. L. Rivest. A digital [29] 8. Rizvi, A Mendelzop,' S. Su(}ilar'shan,fan% P. Roy.
signature scheme secure against adaptive chosen-message Extending qulerIy r;wrltlng Zeé]\;[n%/}les or ne—gralged
attacks. STAM Journal on Computing, 17(2):96-99, 1988. ?g?egh‘gg)ro' n ;50525Og2 Sy, Management of Data

[12] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. 301 R. Si 1 Dages oo~ i ’ S d
Executing SQL over encrypted data in the database service [30] R. Sion. Query execution assurance for outsource
provider model. In Proc. of ACM Management of Data databases. In Proc. of Very Large Data Bases (VLDB),
(SIGMOD), pages 216-227, 2002. pages 601-612, 2005.

[13] H. Hacigumus, B. R. Iyer, and S. Mehrotra. Providing [31] R. Tamassia and N. Triandopoulos. Efficient Content
database as a service. In Proc. of International Conference Authentication over Distributed Hash Tables. Technical

on Data Engineering (ICDE), pages 29-40, 2002. report, CS Department, Brown University, 2005.

[14] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving
index for range queries. In Proc. of Very Large Data Bases
(VLDB), pages 720-731, 2004.

132

Ling
Highlight

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

